Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chem Sci ; 14(19): 4961-4978, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2327205

ABSTRACT

Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.

2.
Anal Chem ; 94(37): 12683-12690, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-1991485

ABSTRACT

During the COVID-19 (coronavirus disease 2019) pandemic, several SARS-CoV-2 variants of concern emerged, including the Omicron variant, which has enhanced infectivity and immune invasion. Many antibodies and aptamers that bind the spike (S) of previous strains of SARS-CoV-2 either do not bind or bind with low affinity to Omicron S. In this study, we report a high-affinity SARS-CoV-2 Omicron RBD-binding aptamer (SCORe) that binds Omicron BA.1 and BA.2 RBD with nanomolar KD1. We employ aptamers SCORe.50 and SNAP4.74 in a multiplexed lateral flow assay (LFA) to distinguish between Omicron and wild-type S at concentrations as low as 100 pM. Finally, we show that SCORe.50 and its dimerized form SCOReD can neutralize Omicron S-pseudotyped virus infection of ACE2-overexpressing cells by >70%. SCORe therefore has potential applications in COVID-19 rapid diagnostics as well as in viral neutralization.


Subject(s)
Aptamers, Nucleotide , COVID-19 , RNA Viruses , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2/genetics
3.
Anal Chem ; 94(20): 7278-7285, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1829922

ABSTRACT

The COVID-19 pandemic is among the greatest health and socioeconomic crises in recent history. Although COVID-19 vaccines are being distributed, there remains a need for rapid testing to limit viral spread from infected individuals. We previously identified the SARS-CoV-2 spike protein N-terminal domain (NTD) binding DNA aptamer 1 (SNAP1) for detection of SARS-CoV-2 virus by aptamer-antibody sandwich enzyme-linked immunoassay (ELISA) and lateral flow assay (LFA). In this work, we identify a new aptamer that also binds at the NTD, named SARS-CoV-2 spike protein NTD-binding DNA aptamer 4 (SNAP4). SNAP4 binds with high affinity (<30 nM) for the SARS-CoV-2 spike protein, a 2-fold improvement over SNAP1. Furthermore, we utilized both SNAP1 and SNAP4 in an aptamer sandwich LFA (AptaFlow), which detected SARS-CoV-2 UV-inactivated virus at concentrations as low as 106 copies/mL. AptaFlow costs <$1 per test to produce, provides results in <1 h, and detects SARS-CoV-2 at concentrations that indicate higher viral loads and a high probability of contagious transmission. AptaFlow is a potential approach for a low-cost, convenient antigen test to aid the control of the COVID-19 pandemic.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Antibodies, Viral , Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Angew Chem Int Ed Engl ; 60(39): 21211-21215, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1332937

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has devastated families and disrupted healthcare, economies and societies across the globe. Molecular recognition agents that are specific for distinct viral proteins are critical components for rapid diagnostics and targeted therapeutics. In this work, we demonstrate the selection of novel DNA aptamers that bind to the SARS-CoV-2 spike glycoprotein with high specificity and affinity (<80 nM). Through binding assays and high resolution cryo-EM, we demonstrate that SNAP1 (SARS-CoV-2 spike protein N-terminal domain-binding aptamer 1) binds to the S N-terminal domain. We applied SNAP1 in lateral flow assays (LFAs) and ELISAs to detect UV-inactivated SARS-CoV-2 at concentrations as low as 5×105  copies mL-1 . SNAP1 is therefore a promising molecular tool for SARS-CoV-2 diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Models, Molecular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL